Article 7413

Title of the article

INVARIANTS OF SMOOTH LAYERINGS

Authors

Kuzakon' Viktor Mikhaylovich, Candidate of physical and mathematical sciences, associate professor, sub-department of higher mathematics, Odessa National Academy of Food Technologies
(112 Kanatnaya street, Odessa, Ukraine), kuzakon_v@ukr.net
Shelekhov Aleksandr Mikhaylovich, Doctor of physical and mathematical sciences, professor, sub-department of functional analysis and geometry, Tver State University (35 Sadovy lane, Tver, Russia), amshelekhov@rambler.ru

Index UDK

514

Abstract

Background. Geometry of smooth layerings is one of the main objects of research in differential geometry, having multiple applications, particularly in theoretical physics. Differential invariants of layerings have been studied by one of the authors of the present article by the methods developed in work by A. Vinogradov, D. Alekseevsky and V. Lychagin. However, these methods do not represent invariant notation of differential equations of the studied objects, and that causes certain difficulties in research of complex differential-geometric structures. The work is aimed at the development of a universal approach to studying the layerings of various codimensionality.
Materials and methods. The authors use the method of external forms and moving frames, developed by Elie Cartan and modified by G.F. Laptev and other geometers. In particular, G.F. Laptev built the invariant theory of differentiable mapping of the smooth manifold into the manifold of greater dimensionality. In the present work the authors show the ways to research the geometry of smooth submersions and smooth layerings determined by them using the method of Cartan - Laptev.
Results. The authors found a canonical form of structural equations of smooth submersions, discovered the geometrical sense of canonization. It is shown that canonical submersions are connected with G-structures of the first and second order and a certain trivalent tensor.
Conclusions. The method of Cartan – Laptev allows effective rsearching of the geometry of smooth layerings of various codimansionality both on random smooth manifolds and on manifolds, supplied by an additional structure.

Key words

method of external forms and moving frames, geometry of smooth layerings, manifold.

Download PDF
References

1. Kuzakon' V. M., Rakhula M. O. Ukrainskiy geometricheskiy sbornik [Ukranian geometrical collection]. 1978, no. 21, pp. 44–50.
2. Kuzakon' V. M. Matematichni Ctudiї [Mathematical studies]. 2002, vol. 17, no. 2, pp. 199–210.
3. Kuzakon' V. M. Mat. metodi ta fіz.-mekh. polya [Mathematical methods and physical-mechanical fields]. 2005, vol. 48, no. 4, pp. 95–99.
4. Kuzakon' V. M. Zbіrnik prats' Іnstitutu matematiki NAN Ukraїni [Collected papers of the Institute of mathematics of the National Academy of Sciences of Ukraine]. 2006, vol. 3, no. 3, pp. 201–212.
5. Kuzakon' V. M., Strel'tsova I. S. Mat. metody ta fіz.-mekh. polya [Mathematical methods and physical-mechanical fields]. 2007, vol. 43, no. 1, pp. 49–54.
6. Kuzakon' V. M. Doklady Natsional'noy Akademii Nauk Ukrainy [Reports of the National Academy of Sciences of Ukraine]. 2009, no. 4, pp. 25–27.
7. Kuzakon' V. M. Zbіrnik prats' Іn-tu matematiki NAN Ukraїni [Collected papers of the Institute of mathematics of the National Academy of Sciences of Ukraine]. 2009, vol. 6, no. 2, pp. 82–90.
8. Alekseevskiy D. V., Vinogradov A. M., Lychagin V. V. Sovremennye problemy matematiki. Fudamental'nye napravleniya [Modern problems of mathematics. Fundamental directions]. 1988, vol. 28, 289 p.
9. Krasil'shchik I. S., Lychagin V. V., Vinogradov A. V. Vvedenie v geometriyu nelineynykh differentsial'nykh uravneniy [Introduction into geometry of nonlinear differential equations]. Moscow: Nauka, 1986, 336 p.
10. Laptev G. F. Osnovnye infinitezimal'nye struktury vysshikh poryadkov na gladkom mnogoobrazii: tr. geometricheskogo seminara [Basic infinitesimal structures of higher orders on the smooth manifold: proceedings of the geometrical seminar]. Moscow: VINITI AN SSSR, 1966, vol. 1, pp. 139–189.
11. Laptev G. F. Strukturnye uravneniya glavnogo rassloennogo mnogoobraziya: tr. geometricheskogo seminara [Structural equations of the main foliated manifold: proceedings of the geometrical seminar]. Moscow: VINITI AN SSSR, 1969, vol. 2, pp. 161–178.
12. Laptev G. F. K invariantnoy analiticheskoy teorii differentsiruemykh otobrazheniy: tr. geometricheskogo seminara [Towards invariant analytical theory of differentiable mapping: proceedings of the geometrical seminar]. Moscow: VINITI AN SSSR, 1974, vol. 6, pp. 37–42.
13. Sternberg S. Lektsii po differentsial'noy geometrii [Lections on differential geometry].Moscow:Mir,1970,412p.
14. Lumiste Yu. G. Matrichnoe predstavlenie polugolonomnoy differentsial'noy gruppy i strukturnye uravneniya rassloeniya -koreperov: tr. geometricheskogo seminara [Matrix representation of the semiholonomic differential group and structural equations of layering of p-coframes: proceedings of the geometrical seminar]. Moscow: VINITI AN SSSR, 1974, vol. 5, pp. 239–257.
15. Evtushik L. E. Differentsial'nye svyaznosti i infinitezimal'nye preobrazovaniya prodolzhennoy psevdogruppy: tr. geometricheskogo seminara [Differential connectivities and infinitesimal transformation of the extended pseudogroup: proceedings of the geometrical seminar]. Moscow: VINITI AN SSSR, 1969, vol. 2, pp. 119–150.

 

Дата создания: 18.07.2014 13:02
Дата обновления: 21.07.2014 09:31